Source code for ibllib.io.extractors.training_trials

import logging
import numpy as np
from pkg_resources import parse_version
from one.alf.io import AlfBunch

import ibllib.io.raw_data_loaders as raw
from ibllib.io.extractors.base import BaseBpodTrialsExtractor, run_extractor_classes
from ibllib.io.extractors.training_wheel import Wheel


_logger = logging.getLogger(__name__)


[docs]class FeedbackType(BaseBpodTrialsExtractor): """ Get the feedback that was delivered to subject. **Optional:** saves _ibl_trials.feedbackType.npy Checks in raw datafile for error and reward state. Will raise an error if more than one of the mutually exclusive states have been triggered. Sets feedbackType to -1 if error state was triggered (applies to no-go) Sets feedbackType to +1 if reward state was triggered """ save_names = '_ibl_trials.feedbackType.npy' var_names = 'feedbackType' def _extract(self): feedbackType = np.empty(len(self.bpod_trials)) feedbackType.fill(np.nan) reward = [] error = [] no_go = [] for t in self.bpod_trials: reward.append(~np.isnan(t['behavior_data']['States timestamps']['reward'][0][0])) error.append(~np.isnan(t['behavior_data']['States timestamps']['error'][0][0])) no_go.append(~np.isnan(t['behavior_data']['States timestamps']['no_go'][0][0])) if not all(np.sum([reward, error, no_go], axis=0) == np.ones(len(self.bpod_trials))): raise ValueError feedbackType[reward] = 1 feedbackType[error] = -1 feedbackType[no_go] = -1 feedbackType = feedbackType.astype('int64') return feedbackType
[docs]class ContrastLR(BaseBpodTrialsExtractor): """ Get left and right contrasts from raw datafile. Optionally, saves _ibl_trials.contrastLeft.npy and _ibl_trials.contrastRight.npy to alf folder. Uses signed_contrast to create left and right contrast vectors. """ save_names = ('_ibl_trials.contrastLeft.npy', '_ibl_trials.contrastRight.npy') var_names = ('contrastLeft', 'contrastRight') def _extract(self): contrastLeft = np.array([t['contrast']['value'] if np.sign( t['position']) < 0 else np.nan for t in self.bpod_trials]) contrastRight = np.array([t['contrast']['value'] if np.sign( t['position']) > 0 else np.nan for t in self.bpod_trials]) return contrastLeft, contrastRight
[docs]class ProbabilityLeft(BaseBpodTrialsExtractor): save_names = '_ibl_trials.probabilityLeft.npy' var_names = 'probabilityLeft' def _extract(self, **kwargs): return np.array([t['stim_probability_left'] for t in self.bpod_trials])
[docs]class Choice(BaseBpodTrialsExtractor): """ Get the subject's choice in every trial. **Optional:** saves _ibl_trials.choice.npy to alf folder. Uses signed_contrast and trial_correct. -1 is a CCW turn (towards the left) +1 is a CW turn (towards the right) 0 is a no_go trial If a trial is correct the choice of the animal was the inverse of the sign of the position. >>> choice[t] = -np.sign(position[t]) if trial_correct[t] """ save_names = '_ibl_trials.choice.npy' var_names = 'choice' def _extract(self): sitm_side = np.array([np.sign(t['position']) for t in self.bpod_trials]) trial_correct = np.array([t['trial_correct'] for t in self.bpod_trials]) trial_nogo = np.array( [~np.isnan(t['behavior_data']['States timestamps']['no_go'][0][0]) for t in self.bpod_trials]) choice = sitm_side.copy() choice[trial_correct] = -choice[trial_correct] choice[trial_nogo] = 0 choice = choice.astype(int) return choice
[docs]class RepNum(BaseBpodTrialsExtractor): """ Count the consecutive repeated trials. **Optional:** saves _ibl_trials.repNum.npy to alf folder. Creates trial_repeated from trial['contrast']['type'] == 'RepeatContrast' >>> trial_repeated = [0, 1, 1, 0, 1, 0, 1, 1, 1, 0] >>> repNum = [0, 1, 2, 0, 1, 0, 1, 2, 3, 0] """ save_names = '_ibl_trials.repNum.npy' var_names = 'repNum' def _extract(self): trial_repeated = np.array( [t['contrast']['type'] == 'RepeatContrast' for t in self.bpod_trials]) trial_repeated = trial_repeated.astype(int) repNum = trial_repeated.copy() c = 0 for i in range(len(trial_repeated)): if trial_repeated[i] == 0: c = 0 repNum[i] = 0 continue c += 1 repNum[i] = c return repNum
[docs]class RewardVolume(BaseBpodTrialsExtractor): """ Load reward volume delivered for each trial. **Optional:** saves _ibl_trials.rewardVolume.npy Uses reward_current to accumulate the amount of """ save_names = '_ibl_trials.rewardVolume.npy' var_names = 'rewardVolume' def _extract(self): trial_volume = [x['reward_amount'] if x['trial_correct'] else 0 for x in self.bpod_trials] reward_volume = np.array(trial_volume).astype(np.float64) assert len(reward_volume) == len(self.bpod_trials) return reward_volume
[docs]class FeedbackTimes(BaseBpodTrialsExtractor): """ Get the times the water or error tone was delivered to the animal. **Optional:** saves _ibl_trials.feedback_times.npy Gets reward and error state init times vectors, checks if theintersection of nans is empty, then merges the 2 vectors. """ save_names = '_ibl_trials.feedback_times.npy' var_names = 'feedback_times'
[docs] @staticmethod def get_feedback_times_lt5(session_path, data=False): if not data: data = raw.load_data(session_path) rw_times = [tr['behavior_data']['States timestamps']['reward'][0][0] for tr in data] err_times = [tr['behavior_data']['States timestamps']['error'][0][0] for tr in data] nogo_times = [tr['behavior_data']['States timestamps']['no_go'][0][0] for tr in data] assert sum(np.isnan(rw_times) & np.isnan(err_times) & np.isnan(nogo_times)) == 0 merge = np.array([np.array(times)[~np.isnan(times)] for times in zip(rw_times, err_times, nogo_times)]).squeeze() return np.array(merge)
[docs] @staticmethod def get_feedback_times_ge5(session_path, data=False): # ger err and no go trig times -- look for BNC2High of trial -- verify # only 2 onset times go tone and noise, select 2nd/-1 OR select the one # that is grater than the nogo or err trial onset time if not data: data = raw.load_data(session_path) missed_bnc2 = 0 rw_times, err_sound_times, merge = [np.zeros([len(data), ]) for _ in range(3)] for ind, tr in enumerate(data): st = tr['behavior_data']['Events timestamps'].get('BNC2High', None) if not st: st = np.array([np.nan, np.nan]) missed_bnc2 += 1 # xonar soundcard duplicates events, remove consecutive events too close together st = np.delete(st, np.where(np.diff(st) < 0.020)[0] + 1) rw_times[ind] = tr['behavior_data']['States timestamps']['reward'][0][0] # get the error sound only if the reward is nan err_sound_times[ind] = st[-1] if st.size >= 2 and np.isnan(rw_times[ind]) else np.nan if missed_bnc2 == len(data): _logger.warning('No BNC2 for feedback times, filling error trials NaNs') merge *= np.nan merge[~np.isnan(rw_times)] = rw_times[~np.isnan(rw_times)] merge[~np.isnan(err_sound_times)] = err_sound_times[~np.isnan(err_sound_times)] return merge
def _extract(self): # Version check if parse_version(self.settings['IBLRIG_VERSION_TAG']) >= parse_version('5.0.0'): merge = self.get_feedback_times_ge5(self.session_path, data=self.bpod_trials) else: merge = self.get_feedback_times_lt5(self.session_path, data=self.bpod_trials) return np.array(merge)
[docs]class Intervals(BaseBpodTrialsExtractor): """ Trial start to trial end. Trial end includes 1 or 2 seconds after feedback, (depending on the feedback) and 0.5 seconds of iti. **Optional:** saves _ibl_trials.intervals.npy Uses the corrected Trial start and Trial end timestamp values form PyBpod. """ save_names = '_ibl_trials.intervals.npy' var_names = 'intervals' def _extract(self): starts = [t['behavior_data']['Trial start timestamp'] for t in self.bpod_trials] ends = [t['behavior_data']['Trial end timestamp'] for t in self.bpod_trials] return np.array([starts, ends]).T
[docs]class ResponseTimes(BaseBpodTrialsExtractor): """ Time (in absolute seconds from session start) when a response was recorded. **Optional:** saves _ibl_trials.response_times.npy Uses the timestamp of the end of the closed_loop state. """ save_names = '_ibl_trials.response_times.npy' var_names = 'response_times' def _extract(self): rt = np.array([tr['behavior_data']['States timestamps']['closed_loop'][0][1] for tr in self.bpod_trials]) return rt
[docs]class ItiDuration(BaseBpodTrialsExtractor): """ Calculate duration of iti from state timestamps. **Optional:** saves _ibl_trials.iti_duration.npy Uses Trial end timestamp and get_response_times to calculate iti. """ save_names = '_ibl_trials.itiDuration.npy' var_names = 'iti_dur' def _extract(self): rt, _ = ResponseTimes(self.session_path).extract( save=False, bpod_trials=self.bpod_trials, settings=self.settings) ends = np.array([t['behavior_data']['Trial end timestamp'] for t in self.bpod_trials]) iti_dur = ends - rt return iti_dur
[docs]class GoCueTriggerTimes(BaseBpodTrialsExtractor): """ Get trigger times of goCue from state machine. Current software solution for triggering sounds uses PyBpod soft codes. Delays can be in the order of 10's of ms. This is the time when the command to play the sound was executed. To measure accurate time, either getting the sound onset from xonar soundcard sync pulse (latencies may vary). """ save_names = '_ibl_trials.goCueTrigger_times.npy' var_names = 'goCueTrigger_times' def _extract(self): if parse_version(self.settings['IBLRIG_VERSION_TAG']) >= parse_version('5.0.0'): goCue = np.array([tr['behavior_data']['States timestamps'] ['play_tone'][0][0] for tr in self.bpod_trials]) else: goCue = np.array([tr['behavior_data']['States timestamps'] ['closed_loop'][0][0] for tr in self.bpod_trials]) return goCue
[docs]class TrialType(BaseBpodTrialsExtractor): save_names = '_ibl_trials.type.npy' var_name = 'trial_type' def _extract(self): trial_type = [] for tr in self.bpod_trials: if ~np.isnan(tr["behavior_data"]["States timestamps"]["reward"][0][0]): trial_type.append(1) elif ~np.isnan(tr["behavior_data"]["States timestamps"]["error"][0][0]): trial_type.append(-1) elif ~np.isnan(tr["behavior_data"]["States timestamps"]["no_go"][0][0]): trial_type.append(0) else: _logger.warning("Trial is not in set {-1, 0, 1}, appending NaN to trialType") trial_type.append(np.nan) return np.array(trial_type)
[docs]class GoCueTimes(BaseBpodTrialsExtractor): """ Get trigger times of goCue from state machine. Current software solution for triggering sounds uses PyBpod soft codes. Delays can be in the order of 10-100s of ms. This is the time when the command to play the sound was executed. To measure accurate time, either getting the sound onset from the future microphone OR the new xonar soundcard and setup developed by Sanworks guarantees a set latency (in testing). """ save_names = '_ibl_trials.goCue_times.npy' var_names = 'goCue_times' def _extract(self): go_cue_times = np.zeros([len(self.bpod_trials), ]) for ind, tr in enumerate(self.bpod_trials): if raw.get_port_events(tr, 'BNC2'): bnchigh = tr['behavior_data']['Events timestamps'].get('BNC2High', None) if bnchigh: go_cue_times[ind] = bnchigh[0] continue bnclow = tr['behavior_data']['Events timestamps'].get('BNC2Low', None) if bnclow: go_cue_times[ind] = bnclow[0] - 0.1 continue go_cue_times[ind] = np.nan else: go_cue_times[ind] = np.nan nmissing = np.sum(np.isnan(go_cue_times)) # Check if all stim_syncs have failed to be detected if np.all(np.isnan(go_cue_times)): _logger.warning( f'{self.session_path}: Missing ALL !! BNC2 TTLs ({nmissing} trials)') # Check if any stim_sync has failed be detected for every trial elif np.any(np.isnan(go_cue_times)): _logger.warning(f'{self.session_path}: Missing BNC2 TTLs on {nmissing} trials') return go_cue_times
[docs]class IncludedTrials(BaseBpodTrialsExtractor): save_names = '_ibl_trials.included.npy' var_names = 'included' def _extract(self): if parse_version(self.settings['IBLRIG_VERSION_TAG']) >= parse_version('5.0.0'): trials_included = self.get_included_trials_ge5( data=self.bpod_trials, settings=self.settings) else: trials_included = self.get_included_trials_lt5(data=self.bpod_trials) return trials_included
[docs] @staticmethod def get_included_trials_lt5(data=False): trials_included = np.array([True for t in data]) return trials_included
[docs] @staticmethod def get_included_trials_ge5(data=False, settings=False): trials_included = np.array([True for t in data]) if ('SUBJECT_DISENGAGED_TRIGGERED' in settings.keys() and settings[ 'SUBJECT_DISENGAGED_TRIGGERED'] is not False): idx = settings['SUBJECT_DISENGAGED_TRIALNUM'] - 1 trials_included[idx:] = False return trials_included
[docs]class ItiInTimes(BaseBpodTrialsExtractor): var_names = 'itiIn_times' def _extract(self): if parse_version(self.settings["IBLRIG_VERSION_TAG"]) < parse_version("5.0.0"): iti_in = np.ones(len(self.bpod_trials)) * np.nan else: iti_in = np.array( [tr["behavior_data"]["States timestamps"] ["exit_state"][0][0] for tr in self.bpod_trials] ) return iti_in
[docs]class ErrorCueTriggerTimes(BaseBpodTrialsExtractor): var_names = 'errorCueTrigger_times' def _extract(self): errorCueTrigger_times = np.zeros(len(self.bpod_trials)) * np.nan for i, tr in enumerate(self.bpod_trials): nogo = tr["behavior_data"]["States timestamps"]["no_go"][0][0] error = tr["behavior_data"]["States timestamps"]["error"][0][0] if np.all(~np.isnan(nogo)): errorCueTrigger_times[i] = nogo elif np.all(~np.isnan(error)): errorCueTrigger_times[i] = error return errorCueTrigger_times
[docs]class StimFreezeTriggerTimes(BaseBpodTrialsExtractor): var_names = 'stimFreezeTrigger_times' def _extract(self): if parse_version(self.settings["IBLRIG_VERSION_TAG"]) < parse_version("6.2.5"): return np.ones(len(self.bpod_trials)) * np.nan freeze_reward = np.array( [ True if np.all(~np.isnan(tr["behavior_data"]["States timestamps"]["freeze_reward"][0])) else False for tr in self.bpod_trials ] ) freeze_error = np.array( [ True if np.all(~np.isnan(tr["behavior_data"]["States timestamps"]["freeze_error"][0])) else False for tr in self.bpod_trials ] ) no_go = np.array( [ True if np.all(~np.isnan(tr["behavior_data"]["States timestamps"]["no_go"][0])) else False for tr in self.bpod_trials ] ) assert (np.sum(freeze_error) + np.sum(freeze_reward) + np.sum(no_go) == len(self.bpod_trials)) stimFreezeTrigger = np.array([]) for r, e, n, tr in zip(freeze_reward, freeze_error, no_go, self.bpod_trials): if n: stimFreezeTrigger = np.append(stimFreezeTrigger, np.nan) continue state = "freeze_reward" if r else "freeze_error" stimFreezeTrigger = np.append( stimFreezeTrigger, tr["behavior_data"]["States timestamps"][state][0][0] ) return stimFreezeTrigger
[docs]class StimOffTriggerTimes(BaseBpodTrialsExtractor): var_names = 'stimOffTrigger_times' def _extract(self): if parse_version(self.settings["IBLRIG_VERSION_TAG"]) >= parse_version("6.2.5"): stim_off_trigger_state = "hide_stim" elif parse_version(self.settings["IBLRIG_VERSION_TAG"]) >= parse_version("5.0.0"): stim_off_trigger_state = "exit_state" else: stim_off_trigger_state = "trial_start" stimOffTrigger_times = np.array( [tr["behavior_data"]["States timestamps"][stim_off_trigger_state][0][0] for tr in self.bpod_trials] ) # If pre version 5.0.0 no specific nogo Off trigger was given, just return trial_starts if stim_off_trigger_state == "trial_start": return stimOffTrigger_times no_goTrigger_times = np.array( [tr["behavior_data"]["States timestamps"]["no_go"][0][0] for tr in self.bpod_trials] ) # Stim off trigs are either in their own state or in the no_go state if the # mouse did not move, if the stim_off_trigger_state always exist # (exit_state or trial_start) # no NaNs will happen, NaNs might happen in at last trial if # session was stopped after response # if stim_off_trigger_state == "hide_stim": # assert all(~np.isnan(no_goTrigger_times) == np.isnan(stimOffTrigger_times)) # Patch with the no_go states trig times stimOffTrigger_times[~np.isnan(no_goTrigger_times)] = no_goTrigger_times[ ~np.isnan(no_goTrigger_times) ] return stimOffTrigger_times
[docs]class StimOnTriggerTimes(BaseBpodTrialsExtractor): save_names = '_ibl_trials.stimOnTrigger_times.npy' var_names = 'stimOnTrigger_times' def _extract(self): # Get the stim_on_state that triggers the onset of the stim stim_on_state = np.array([tr['behavior_data']['States timestamps'] ['stim_on'][0] for tr in self.bpod_trials]) return stim_on_state[:, 0].T
[docs]class StimOnTimes_deprecated(BaseBpodTrialsExtractor): save_names = '_ibl_trials.stimOn_times.npy' var_names = 'stimOn_times' def _extract(self): """ Find the time of the state machine command to turn on the stim (state stim_on start or rotary_encoder_event2) Find the next frame change from the photodiode after that TS. Screen is not displaying anything until then. (Frame changes are in BNC1 High and BNC1 Low) """ # Version check _logger.warning("Deprecation Warning: this is an old version of stimOn extraction." "From version 5., use StimOnOffFreezeTimes") if parse_version(self.settings['IBLRIG_VERSION_TAG']) >= parse_version('5.0.0'): stimOn_times = self.get_stimOn_times_ge5(self.session_path, data=self.bpod_trials) else: stimOn_times = self.get_stimOn_times_lt5(self.session_path, data=self.bpod_trials) return np.array(stimOn_times)
[docs] @staticmethod def get_stimOn_times_ge5(session_path, data=False): """ Find first and last stim_sync pulse of the trial. stimOn_times should be the first after the stim_on state. (Stim updates are in BNC1High and BNC1Low - frame2TTL device) Check that all trials have frame changes. Find length of stim_on_state [start, stop]. If either check fails the HW device failed to detect the stim_sync square change Substitute that trial's missing or incorrect value with a NaN. return stimOn_times """ if not data: data = raw.load_data(session_path) # Get all stim_sync events detected stim_sync_all = [raw.get_port_events(tr, 'BNC1') for tr in data] stim_sync_all = [np.array(x) for x in stim_sync_all] # Get the stim_on_state that triggers the onset of the stim stim_on_state = np.array([tr['behavior_data']['States timestamps'] ['stim_on'][0] for tr in data]) stimOn_times = np.array([]) for sync, on, off in zip( stim_sync_all, stim_on_state[:, 0], stim_on_state[:, 1]): pulse = sync[np.where(np.bitwise_and((sync > on), (sync <= off)))] if pulse.size == 0: stimOn_times = np.append(stimOn_times, np.nan) else: stimOn_times = np.append(stimOn_times, pulse) nmissing = np.sum(np.isnan(stimOn_times)) # Check if all stim_syncs have failed to be detected if np.all(np.isnan(stimOn_times)): _logger.error(f'{session_path}: Missing ALL BNC1 TTLs ({nmissing} trials)') # Check if any stim_sync has failed be detected for every trial if np.any(np.isnan(stimOn_times)): _logger.warning(f'{session_path}: Missing BNC1 TTLs on {nmissing} trials') return stimOn_times
[docs] @staticmethod def get_stimOn_times_lt5(session_path, data=False): """ Find the time of the statemachine command to turn on hte stim (state stim_on start or rotary_encoder_event2) Find the next frame change from the photodiodeafter that TS. Screen is not displaying anything until then. (Frame changes are in BNC1High and BNC1Low) """ if not data: data = raw.load_data(session_path) stim_on = [] bnc_h = [] bnc_l = [] for tr in data: stim_on.append(tr['behavior_data']['States timestamps']['stim_on'][0][0]) if 'BNC1High' in tr['behavior_data']['Events timestamps'].keys(): bnc_h.append(np.array(tr['behavior_data'] ['Events timestamps']['BNC1High'])) else: bnc_h.append(np.array([np.NINF])) if 'BNC1Low' in tr['behavior_data']['Events timestamps'].keys(): bnc_l.append(np.array(tr['behavior_data'] ['Events timestamps']['BNC1Low'])) else: bnc_l.append(np.array([np.NINF])) stim_on = np.array(stim_on) bnc_h = np.array(bnc_h, dtype=object) bnc_l = np.array(bnc_l, dtype=object) count_missing = 0 stimOn_times = np.zeros_like(stim_on) for i in range(len(stim_on)): hl = np.sort(np.concatenate([bnc_h[i], bnc_l[i]])) stot = hl[hl > stim_on[i]] if np.size(stot) == 0: stot = np.array([np.nan]) count_missing += 1 stimOn_times[i] = stot[0] if np.all(np.isnan(stimOn_times)): _logger.error(f'{session_path}: Missing ALL BNC1 TTLs ({count_missing} trials)') if count_missing > 0: _logger.warning(f'{session_path}: Missing BNC1 TTLs on {count_missing} trials') return np.array(stimOn_times)
[docs]class StimOnOffFreezeTimes(BaseBpodTrialsExtractor): """ Extracts stim on / off and freeze times from Bpod BNC1 detected fronts """ save_names = ('_ibl_trials.stimOn_times.npy', None, None) var_names = ('stimOn_times', 'stimOff_times', 'stimFreeze_times') def _extract(self): choice = Choice(self.session_path).extract( bpod_trials=self.bpod_trials, settings=self.settings, save=False )[0] f2TTL = [raw.get_port_events(tr, name='BNC1') for tr in self.bpod_trials] stimOn_times = np.array([]) stimOff_times = np.array([]) stimFreeze_times = np.array([]) for tr in f2TTL: if tr and len(tr) == 2: stimOn_times = np.append(stimOn_times, tr[0]) stimOff_times = np.append(stimOff_times, tr[-1]) stimFreeze_times = np.append(stimFreeze_times, np.nan) elif tr and len(tr) >= 3: stimOn_times = np.append(stimOn_times, tr[0]) stimOff_times = np.append(stimOff_times, tr[-1]) stimFreeze_times = np.append(stimFreeze_times, tr[-2]) else: stimOn_times = np.append(stimOn_times, np.nan) stimOff_times = np.append(stimOff_times, np.nan) stimFreeze_times = np.append(stimFreeze_times, np.nan) # In no_go trials no stimFreeze happens just stim Off stimFreeze_times[choice == 0] = np.nan # Check for trigger times # 2nd order criteria: # stimOn -> Closest one to stimOnTrigger? # stimOff -> Closest one to stimOffTrigger? # stimFreeze -> Closest one to stimFreezeTrigger? return stimOn_times, stimOff_times, stimFreeze_times
[docs]class PhasePosQuiescence(BaseBpodTrialsExtractor): """Extracts stimulus phase, position and quiescence from Bpod data. For extraction of pre-generated events, use the ProbaContrasts extractor instead. """ save_names = (None, None, None) var_names = ('phase', 'position', 'quiescence') def _extract(self, **kwargs): phase = np.array([t['stim_phase'] for t in self.bpod_trials]) position = np.array([t['position'] for t in self.bpod_trials]) quiescence = np.array([t['quiescent_period'] for t in self.bpod_trials]) return phase, position, quiescence
[docs]class TrialsTable(BaseBpodTrialsExtractor): """ Extracts the following into a table from Bpod raw data: intervals, goCue_times, response_times, choice, stimOn_times, contrastLeft, contrastRight, feedback_times, feedbackType, rewardVolume, probabilityLeft, firstMovement_times Additionally extracts the following wheel data: wheel_timestamps, wheel_position, wheel_moves_intervals, wheel_moves_peak_amplitude """ save_names = ('_ibl_trials.table.pqt', None, None, '_ibl_wheel.timestamps.npy', '_ibl_wheel.position.npy', '_ibl_wheelMoves.intervals.npy', '_ibl_wheelMoves.peakAmplitude.npy', None, None) var_names = ('table', 'stimOff_times', 'stimFreeze_times', 'wheel_timestamps', 'wheel_position', 'wheel_moves_intervals', 'wheel_moves_peak_amplitude', 'peakVelocity_times', 'is_final_movement') def _extract(self, extractor_classes=None, **kwargs): base = [Intervals, GoCueTimes, ResponseTimes, Choice, StimOnOffFreezeTimes, ContrastLR, FeedbackTimes, FeedbackType, RewardVolume, ProbabilityLeft, Wheel] out, _ = run_extractor_classes( base, session_path=self.session_path, bpod_trials=self.bpod_trials, settings=self.settings, save=False ) table = AlfBunch({k: v for k, v in out.items() if k not in self.var_names}) assert len(table.keys()) == 12 return table.to_df(), *(out.pop(x) for x in self.var_names if x != 'table')
[docs]def extract_all(session_path, save=False, bpod_trials=None, settings=None): """Extract trials and wheel data. For task versions >= 5.0.0, outputs wheel data and trials.table dataset (+ some extra datasets) Parameters ---------- session_path : str, pathlib.Path The path to the session save : bool If true save the data files to ALF bpod_trials : list of dicts The Bpod trial dicts loaded from the _iblrig_taskData.raw dataset settings : dict The Bpod settings loaded from the _iblrig_taskSettings.raw dataset Returns ------- A list of extracted data and a list of file paths if save is True (otherwise None) """ if not bpod_trials: bpod_trials = raw.load_data(session_path) if not settings: settings = raw.load_settings(session_path) if settings is None or settings['IBLRIG_VERSION_TAG'] == '': settings = {'IBLRIG_VERSION_TAG': '100.0.0'} base = [RepNum, GoCueTriggerTimes] # Version check if parse_version(settings['IBLRIG_VERSION_TAG']) >= parse_version('5.0.0'): # We now extract a single trials table base.extend([ StimOnTriggerTimes, ItiInTimes, StimOffTriggerTimes, StimFreezeTriggerTimes, ErrorCueTriggerTimes, TrialsTable, PhasePosQuiescence ]) else: base.extend([ Intervals, Wheel, FeedbackType, ContrastLR, ProbabilityLeft, Choice, IncludedTrials, StimOnTimes_deprecated, RewardVolume, FeedbackTimes, ResponseTimes, GoCueTimes, PhasePosQuiescence ]) out, fil = run_extractor_classes( base, save=save, session_path=session_path, bpod_trials=bpod_trials, settings=settings) return out, fil